Three-Dimensional Nanoscale Mapping of State-of-the-Art Field-Effect Transistors (FinFETs).

نویسندگان

  • Pritesh Parikh
  • Corey Senowitz
  • Don Lyons
  • Isabelle Martin
  • Ty J Prosa
  • Michael DiBattista
  • Arun Devaraj
  • Y Shirley Meng
چکیده

The semiconductor industry has seen tremendous progress over the last few decades with continuous reduction in transistor size to improve device performance. Miniaturization of devices has led to changes in the dopants and dielectric layers incorporated. As the gradual shift from two-dimensional metal-oxide semiconductor field-effect transistor to three-dimensional (3D) field-effect transistors (finFETs) occurred, it has become imperative to understand compositional variability with nanoscale spatial resolution. Compositional changes can affect device performance primarily through fluctuations in threshold voltage and channel current density. Traditional techniques such as scanning electron microscope and focused ion beam no longer provide the required resolution to probe the physical structure and chemical composition of individual fins. Hence advanced multimodal characterization approaches are required to better understand electronic devices. Herein, we report the study of 14 nm commercial finFETs using atom probe tomography (APT) and scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy (STEM-EDS). Complimentary compositional maps were obtained using both techniques with analysis of the gate dielectrics and silicon fin. APT additionally provided 3D information and allowed analysis of the distribution of low atomic number dopant elements (e.g., boron), which are elusive when using STEM-EDS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FinFET Circuit Design

Fin-type field-effect transistors (FinFETs) are promising substitutes for bulk CMOS at the nanoscale. FinFETs are double-gate devices. The two gates of a FinFET can either be shorted for higher perfomance or independently controlled for lower leakage or reduced transistor count. This gives rise to a rich design space. This chapter provides an introduction to various interesting FinFET logic des...

متن کامل

Symmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)

Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...

متن کامل

Field effect transistor nanobiosensors: State-of-the-art and key challenges as point of care testing devices

The existing health care systems focus on treating diseases rather than preventing them. Patients are generally not tested unless physiological symptoms are appeared. When they do get tested, the results often take several days and can be inconclusive if the disease is at an early stage. In order to facilitate the diagnostics process and make tests more readily available for patients, the conce...

متن کامل

Design and Analysis of Johnson Counter Using Finfet Technology

Conventional CMOS technology's performance deteriorates due to increased short channel effects. Double-gate (DG) FinFETs has better short channel effects performance compared to the conventional CMOS and stimulates technology scaling. The main drawback of using CMOS transistors are high power consumption and high leakage current. Fin-type field-effect transistors (FinFETs) are promising substit...

متن کامل

Modeling of Manufacturing of Field-Effect Heterotransistors without P-n-junctions to Optimize Decreasing their Dimensions

It has been recently shown that manufacturing p-n-junctions, field-effect and bipolar transistors, thyristors in a multilayer structure by diffusion or ion implantation with the optimization of dopant and/or radiation defects leads to increase the sharpness of p-n-junctions (both single p-n-junctions and p-n-junctions framework their system). Due to the optimization, one can also obtain increas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada

دوره 23 5  شماره 

صفحات  -

تاریخ انتشار 2017